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Alternative Approach to the Concept of Shape
Invariance in Quantum Mechanics

Cao Xuan Chuan1
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It is shown that in the case of shape invariance, with the use of the mixing
function formalism, exact solvability of the SchroÈ dinger equation can be obtained
without recourse to the technique of supersymmetriza tion. Some consequences
of the method are outlined and illustrated by specific examples.

1. INTRODUCTION

Shape invariance is a quite useful tool to investigate the exact solvability

of the SchroÈ dinger equation

H c n 5 En c n, H 5
d 2

dx 2 2 V(l, x) (1)

in which the set of eigenfunctions { c n} and eigenvalues {En} can be deter-

mined by algebraic means and when the potential V(l, x) can be written as

V(l, x) 5 u2(l, x) 2 u8(l, x) (2)

where l is a parameter.

Since its discovery (Gedenshtein, 1983) it has been commonly thought

that exact solvability using shape invariance can be derived only through the

use of the technique of supersymmetrization.

This paper will present a different approach by showing that the same
result can also be obtained from simple algebra, independent of SU(2), and

this may have useful consequences from the pedagogical point of view.
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2. FORMULATION

The theory of ª mixing functionsº has been described in previous papers

(Cao, 1994, 1997), so that only a brief review of some essential features

which will be needed below will be outlined here.

Consider the matrix equation

f 8 1 F f 5 0; F 5 1 u1 d1

0 u2 2 ; f 5 ( f 1, f 2)
+ (3)

with the notation f 8 5 d f /dx.

The u1, u2, and d1 may be any analytic functions of x. The ª mixing

functionº X is defined as

f 1 5 2 X f 2 (4)

and the compatibility condition requires that u1, u2, d1 be linked by the relation

d1 5 2 X8 1 (u2 2 u1)X (5)

If X is the solution of the equation

X 9 2 2u2 X 8 1 [(u2
2 2 u82) 2 (u2

2 2 u81)]X 5 EX (6)

then by differentiation of (3) and successive use of (4) and (5) we obtain the

following results:

f 91 2 (u2
1 2 u81) f 1 5 E f 1, f 1 . 2 X exp 1 2 # u2 dx 2 (7)

f 92 2 (u2
2 2 u82) f 2 5 0

The problem of exact solvability of the potential V(l, x) 5 u2
1(l, x) 2

u81(l, x) for the case of shape invariance is thus reduced to the search for

exact solutions of equation (6), where E represents the set of eigenvalues {En}.

3. THE ANSATZ

This can be written as

u2(l, x) 6 u8(l, x) 5 u2(l1, x) 7 u8(l1, x) 1 h 6 (l1) (8)

in which h 6 (l1) is a constant depending on the parameter l1, which is related

to the initial one l by a transformation T1, i.e., l1 5 T1l. The still open question

now is what should be Tn such that the above equation is exactly solvable?

For the moment, we note the following cases: (a) translation l1 5 l 2 1,
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(b) scaling l1 5 ql, and (c) nonscaling l1 5 qlp, where q, p are parameters

(Spiridonov, 1992; Barclay et al., 1993).

Although the approach presented here remains valid for these cases, in
this work we choose to develop the discussion within the frame of case (a),

since most of the potentials of practical use in quantum mechanics can in fact

be constructed from it (see, for instance, Cao, 1991, and references therein).

Consider now equation (3) in which (l1 5 T1l 5 l 2 1)

u1 5 u(l, x); u2 5 u(l 2 n, x)

Here n corresponds to the nth excited stateof the potential V(l, x) 5 u2
1 2

u81. Therefore

f l,n . Xn exp F 2 # u(l 2 n, x) dx G
with the condition

X 9n 2 2u(l 2 n, x)X 8n 1 [(u2(l 2 n, x) 2 u8(l 2 n, x))

2 (u2(l, x) 2 u8(l, x))]Xn 5 En Xn (9)

In the case of translation, it can be verified from the above ansatz that the

exact solvability problem is now reduced to the following results:

(a) The mixing function must be solution of the equation

X 9n 2 2u(l 2 n, x)X 8n 1 2 o
n 2 1

s 5 0
u8(l 2 s)Xn 5 0 (10)

(b) We have

En 5 o
n

r 5 1

h(l 2 r)

4. THE ASSOCIATED PROBLEM

If in (3) we set u1 5 2 u(l, x) and u2 5 u(l 2 n, x), then another system

f 5 ( f 1, f 2)
+ can be defined with the corresponding mixing function Y

f 1 5 2 Y f 2

Proceeding exactly as above and taking into account the change of sign

in (9), we obtain a second SchroÈ dinger equation

f 91 2 (u2
1 1 u81) f 1 5 E f 1; f 1 . 2 Y exp F 2 # u(l 2 n, x) dz G (11)
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The mixing function Y must satisfy the equation

Y 9m 2 2u(l 2 m, x)Y 8m 1 2 o
m 2 1

s 5 1

u8(l 2 s, x)Ym 5 0 (12)

while

Em 5 o
m

r5 1
h(l 2 r)

(a) If u1 5 u2, then the eigenfunction corresponding to the state ) n &
must be

f l,n 5 2 Xn exp F 2 # u(l, x) dx G (13)

in which the function Xn is a solution of the equation

X 9n 2 2u(l, x)X 8n 2 En Xn 5 0 (14)

This aspect has already been discussed in Cao (1997) and noting from the

uniticity of the eigenfunction

f l,n 5 2 Xn exp F 2 # u(l, x) dx G 5 2 Xn exp F 2 # u(l 2 n, x) dx G
so that

Xn 5 Xn exp H # [u(l 2 n, x) 2 u(l, x)] dx J
X and X are identical only for the ground state ) 0 & , which is assumed to be

normalizable and to correspond to the eigenvalue E0 5 0.

(b) Likewise we have for the associated problem

f l,m 5 2 Ym exp F 2 # u(l, x) dx G
where Ym is a solution of the equation

Y 9m 2 2u(l, x)Y 8m 2 [2u8(l, x) 1 Em]Ym 5 0 (15)

On the other hand, differentiating (14), we find

X -n 2 2u(l, x)X 9n 2 [2u8(l, x) 1 En]X 8n 5 0 (16)
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and comparing (16) and (15), it appears that they are identical if

X 8n [ Ym, Em [ En

As for the ground state ) 0 & , X0 5 const, which means that Y0 is not defined.

Therefore, the only consistent choice is to take m 5 n 1 1, indicating that

the two eigenspectra {En} and {En} are degenerate, which is a well-known

result derived from supersymmetry. This is the reason why the couple Xn,

Yn can be referred to as supersymmetric partners.

The behavior of the couple Xn, Yn is, however, different:

(a) Define two operators c 6 5 d/dx 7 [u(l, x) 6 u(l 2 n, x].

Then by making use of the ansatz (8) it can be checked that the two

equations (10) and (12) can also be written in terms of c 6 as

c 2 c+Yn 5 EnYn, c+c 2 Xn 5 En Xn (17)

which means that the two components of the couple (Xn, Yn) must be linked

by the coupled system:

E 1/2
n Xn 5 c+Yn, E 1/2

n Yn 5 c 2 Xn (18)

(b) In order to see how the above results can be used in the theory,

consider again system (3), in which we set

u1 5 u(l 2 p, x), u2 5 u(l 2 p 2 m, x), p 5 0, 1, 2, . . . (19)

Following then exactly the same reasoning, we can write the resulting SchroÈ d-

inger equation as [the notations (l) and (l 2 p) are added in order to avoid

any possible confusion]

f (l 2 p)9m 2 [u2(l 2 p, x) 2 u8(l 2 p, x)] f (l 2 p)
m 5 E(l 2 p)

m f (l 2 p)
m (20)

and corresponds to another mixing function X (l 2 p)
m . Exact solvability means

that this function must be solution of the following equation:

X (l 2 p)9m 2 2u(l 2 p 2 m, x)X (l 2 p)8m 1 2 o
m 1 p 2 1

s 5 p
u8(l 2 s)X (l 2 p)

m 5 0 (21)

with eigenvalues

E (l 2 p)
m 5 o

m 1 p

r 5 p
h(l 2 r) 5 2 E (l)

m 1 o
p 2 1

t 5 1

h(l 2 t) (22)

As m is arbitrary, there will be no loss of generality by setting m 5
n 2 p (m, n refer to the states ) m & , ) n & ) and noting that l 2 p 2 (n 2 p) [
l 2 n. Therefore the above equation can be cast in the form

X (l 2 p)9n 2 p 2 2u(l 2 n, x)X (l 2 p)8n 2 p 1 2 o
n 2 1

s 5 p
u8(l 2 s, x)X (l 2 p)

n 2 p 5 0 (23)
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The special case p 5 1 is particularly interesting since it can be verified that

(23) is in fact identical to the equation (12), which itself corresponds to the

associated mixing function Y (l)
n . For this reason and up to a constant, Y (l)

n 5
X (l 2 1)

n 2 1 .

Returning now to the first equation in (20), we have

E 1/2
n X (l)

n 5 F d

dx
2 [u(l, x) 1 u(l 2 n, x) G X (l 2 1)

n 2 1 (24)

which provides the connection needed between the two functions X (l)
n and

X (l 2 1)
n 2 1 . The analytic expression of the second one is constructed from the first

one in which the quantities n and l must be replaced by l 2 1 and n 2 1

and the process must continue until the last step is reached with X (l 2 n)
0 5 const.

5. THE EIGENFUNCTION

In order to check for the consistency of the present method, we analyze

the case of the eigenfunctions, since by definition

f (l)
1,n 5 2 X (l)

n exp F 2 # u(l 2 n, x) dx G ;

f (l 2 1)
1,n 2 1 5 2 X (l 2 1)

n 2 1 exp F 2 # u(l 2 n, x) dx G
Eliminating then the quantities X (l)

n and X (l 2 1)
n 2 1 and after some simple algebra,

we find

f (l)
1,n 5 A(l) f (l 2 1)

1,n 2 1 (25)

in which A(l ) is the operator defined by A (l) 5 d/dx 2 u(l, x). One may

recognize in (25) the essential result obtained in supersymmetry in the case

of shape invariance, A(l) being the ladder operator.

6. INTERPRETATION

To get a deeper insight on the method and see why it works for the case

of shape invariance, it would be appropriate to return to the general case (3)

in which u1 and u2 may be any analytic functions. Define the matrices B 2 ,

B+ such that
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B 2 5 1 0 0

C 2 0 2 , B+ 5 1 0 C+

0 0 2
C 6 5

d

dx
7 (u1 6 u2)

The following commutation ([, ]) and anticommutation ({, }) rules hold:

(B 2 )2 5 (B+)2 5 0; {B 2 , B+} 5 h 5 1 h1 0

0 h2 2
h1 5 C 2 C+; h2 5 C+C 2 (26)

[B 2 , h] 5 [B+, h] 5 0

[C 2 , C+] 5 2u81, {C 2 , C+} 5 2(h1
2

7 u81)

More explicitly,

h1
2

5
d 2

dx 2 2 2u2
d

dx
1 [(u2

2 2 u82) 2 (u2
1 7 u81)

which can be compared with relation (6), etc.

As the couple B 2 , B+ is not adjoint, this construction differs from conven-

tional supersymmetry and the two Hamiltonians h1, h2 are often referred to

as the ª gauge Hamiltonian,º the role of the gauge being played by the function

u2, which itself is arbitrary, while the function u1 serves to define the potential

V 5 u2
1 2 u81.

Therefore, if the couple X, Y are eigenfunctions of h1, h2, the potentials

V and V 5 u2
1 1 u81 are both exactly solvable.

In other words, it can be stated that if these two approaches are equivalent,

the essence of their focus differs since the object of supersymmetry is the

pair of eigenfunctions f 1, f 1 (the partner eigenfunctions), while the present

method deals with the pair of mixing functions X, Y.
The relative simplicity observed in the special case of shape invariance

results in fact from the intervention of the ansatz (8), but in general, and despite

this equivalence, these two approaches will lead to different applications. The

case of supersymmetry is already well known and need not be discussed

here, while some consequences of the mixing function formalism will be

analyzed below and illustrated by specific examples in the Appendix.
To summarize, the new points presented in this paper are as follows:

(a) The equivalence between the mixing function formalism and conven-

tional supersymmetry can be established by showing that the analytic determi-

nation of the set of exact eigenfunctions and eigenvalues which constitute
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the hallmark of SU(2) for the case of shape invariance can also be obtained

independently through simple algebra.

(b) The present approach, on the other hand, reveals a different facet
of the problem which is not predicted in SU(2) since with the pair of mixing

functions X, Y combined with repeated use of C 6 we may have at our disposal

a convenient means to construct exact solutions of differential equations of

type (10) or (12) especially when these equations cannot be handled with

usual techniques. The example in the first part of the Appendix supports this

point of view.
(c) These solutions can in turn be used to construct a new type of exactly

solvable potential V (n)(x), already discussed in an earlier paper (Cao, 1997)

which in the present context can be written as

V (n)(z) 5 u2
1 1 u81 1 2

X 8n

Xn F X 8n

Xn

2 2u81 G (27)

This is illustrated by the second example in the Appendix.
(d) Finally, for the case of shape invariance, the fact that the present

method can be applied for the chain of potentials V(l 2 p, x), p 5 1, 2, . . . ,

corresponding to the set of eigenvalues given in (22) suggests extension of

the investigation to a number of other directions of research, for instance, p-

multiply degenerate systems.

APPENDIX

(a) Let u1(l, x) 5 l tanh x, l . n, V(l, x) 5 l2 2 l(l 1 1)/cosh2x.

The exact analytic expression (up to a constant) is given below for the
first values of n:

n Xn

0 const

1 tanh x (28)

2 2 1 1 (2l 2 1) tanh2x

3 tanh x F (2l 2 4) 2
2l 2 1

cosh2x G ? ? ?

It can be verified that they are solutions of equation (10) which in the present

case take the form

X 9n 2 2(l 2 n) tanh xX 8n 1 2n
l 2 1±2 (n 2 1)

cosh2x
Xn 5 0

Remark. This approach may also be applied to a number of other types

of analytic functions (u1, u2) and will be presented in another paper.
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(b) The exact eigenfunctions and eigenvalues of the first-order generation

potential V n(l, x) defined in (27) are, respectively,

f m,n 5 Nm,n l 8m,n exp H 2 # F u(l, x) 2
X 81

X1 G dx J
(29)

Em,n 5 Em 2 2En

Nm,n is the constant of normalization; m and n correspond to the excited states

) m & and ) n & of the ª parentº potential V 5 u2
1 2 u81, while the quantity l m,n is

l m,n 5
Xm

Xn

The relation between the functions Xn and Xn is

Xn 5 Xn exp H 2 # [u(l 2 h, x) 2 u(l, x)] dx J (30)

Therefore, making use of (30), (29), and (28), we can infer the eigenfunction
f m,n corresponding to the state ) m, n & of the potential V (n) defined in (27).

For instance, with n 5 1, this potential is

V (l)(x) 5 l2 2 4l 1 2 2
l(l 2 1)

cosh2x
1

2

sinh2x

The first two states ) 2, 1 & and ) 3, 1 & correspond to the eigenfunctions

f 2,1 5 N2,1
sinh x

coshl 2 1x F 2(l 2 1) 1
1

sinh2x G
f 3,1 5 N3,1

sinh2x

coshl 2 1x

The first one is obviously nonnormalizable, while the second one always is

if l . 3. It corresponds to the eigenvalue

E3,1 5 2 2l 1 7

as can be checked by direct substitution in the SchroÈ dinger equation

f 93,1 2 V (l) f 3,1 5 E3,1 f 3,1

Higher order generation potentials of type V (m,n) can also be constructed, but

we shall not discuss this aspect here. For the moment, it may be instructive

to point out the following remark:
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If the parent potential V 5 u2
1 2 u81 is shape invariant, its first-order

generation potential V (1) defined in (27), while exactly solvable, does not

necessarily conserve the same property.
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